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Abstract 

In this paper, we describe our experiences building a multi-hop wireless ad hoc network of 8 nodes driving around a 700 m 
by 300 m site. Each node runs the Dynamic Source Routing (DSR) protocol and interfaces seamlessly with existing Internet 
infrastructure and the Mobile IP protocol. The issues discussed in this paper range from logistical and management issues, to 
protocol design and performance analysis issues. We also present an early characterization of the testbed performance, and 
describe a significant new challenge for ad hoc network routing protocols. The major goal of the paper, however, is to share our 
experiences, in the belief that they may be useful to others who attempt to build other ad hoc network testbeds. 
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1   Introduction 
During the 7 months from August 1998 to February 1999, 
we designed and implemented a full-scale physical testbed to 
enable the evaluation of ad hoc network performance in the 
field. The last week of February and the first week of March 
included demonstrations of this testbed to a number of our 
sponsors and partners, including Lucent Technologies, Bell 
Atlantic, and DARPA. Though the process was very exciting 
for us, we encountered numerous difficulties ranging from the 
technical to the mundane. This paper describes our approach, 
the obstacles we encountered, and our current solutions. Many 
of the problems that arose and the issues that are described in 
this paper appear painfully obvious after they are identified. 
However, as the interest in multi-hop ad hoc networks con- 
tinues to grow, more and more groups will attempt to build 
and deploy similar testbeds and networks, and we hope our 
experiences will enable them to avoid some of the difficulties 
we faced. 

Over the past several years, much research effort has been 
focused on the design and specification of routing protocols 
for multi-hop wireless ad hoc networks. There are now at least 
ten proposals for such protocols currently under consideration 
by the Mobile Ad Hoc Networks (MANET) Working Group 
of the Internet Engineering Task Force (IETF). Before large 
ad hoc networks can be deployed, testbeds must be created to 
profile the performance of these protocols in the real world. 

This paper is written as a design study with the goal of 
identifying a series of issues that others should consider when 
designing their own multi-hop ad hoc network testbeds. In 
particular: 

• We identify several tools we wrote to assist in the debug- 
ging, validation, and analysis of the testbed. We argue 
that one tool, called macf ilter, was critical to our 
success, and should be implemented in other testbeds as 
well. We explain the rationale and cost/benefits of the 
other tools, including changes we had to make to stan- 
dard tools before they would work as desired in the testbed 
environment. 

• We present an overview of how we architected the 
Dynamic Source Routing (DSR) protocol into the ex- 
isting BSD Unix network stack. It is our hope that this 
will prove useful to other protocol architects who wish 
to implement on-demand routing protocols in traditional 
network stacks. We also explain the implementation and 
validation of a network-layer hop-by-hop acknowledge- 
ment scheme, including a novel heuristic for setting the 
retransmission timer. 

• We describe the methodology we used to perform an 
initial characterization of the propagation environment at 
the testbed site, as well as initial testing of the protocols. 
This paper is not a performance analysis of the testbed or 
of the DSR protocol (though such work is in progress). 
The quantitative numbers reported in later sections of this 
paper show that the testbed is working and validate that 
the DSR implementation is behaving reasonably. They 

also point out several interesting consequences of the 
outdoor wireless environment. 

Even if the designers of future testbeds choose to make 
different decisions than we did, the list of issues contained 
in this paper should be valuable for identifying the tasks re- 
quiring attention so that staff assignments can be adequately 
scheduled. To place the testbed into context, the next section 
describes the goals that motivated our testbed. 

2 Goals of the Testbed 
In designing the testbed, our primary goal was to build a 
platform that would enable basic research on the behavior 
of a real implementation of ad hoc network protocols oper- 
ating with truly mobile nodes in a outdoor environment. We 
wanted the testbed to operate in an outdoor setting, since many 
currently envisioned applications of ad hoc networks operate 
outdoors [17], and this environment is inherently more unpre- 
dictable than an in-building environment. Changes in weather, 
the motion of cars and pedestrians, and the presence of build- 
ings and hills all effect the propagation of radio signals. These 
factors constitute challenges that a deployed ad hoc network 
will face, and so we wanted to experience them in our testbed. 
Development of an indoor ad hoc network testbed is a subject 
for further study. 

Another goal of the testbed was to push the protocols to 
the point where they nearly broke, by subjecting them to 
higher rates of topology change than previous testbeds had 
explored [16, 1]. With the vehicles, radios, and site used in 
our testbed, we forced the protocols to adapt to an environment 
in which all links between nodes changed status at least every 
220 seconds. Ignoring the additional factor of packet loss due 
to wireless errors, on average, the network topology changed 
every 4 seconds. 

There have been several prior efforts to build ad hoc network 
testbeds or large experiments, including work by the SURAN 
Project [1], the WINGS Project [10], Task Force XXI [24], 
and BBN. Very little has been published about the specifics of 
these testbeds, though based on available literature, they are 
very different from ours, both in terms of radio technology 
and network design. 

3 DSR Protocol Overview 
The ad hoc network routing protocol used in our testbed is the 
Dynamic Source Routing protocol (DSR) [12,13, 2]. Figure 1 
shows the basic operation of the DSR protocol, which consists 
of two mechanisms: Route Discovery and Route Maintenance. 
Route Discovery is the mechanism by which a node S wishing 
to send a packet to a destination D obtains a source route to D. 

To perform a Route Discovery, the source node S locally 
broadcasts a ROUTE REQUEST packet with the Time-to-Live 
field of the IP header initialized to 1. This type of ROUTE 
REQUEST is called a non-propagating ROUTE REQUEST and 
allows node S to inexpensively query the route caches of 
each of its neighbors for a route to the destination.   If no 
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Figure 1 Basic operation of the DSR protocol showing the 
building of a source route during the propagation of a ROUTE 

REQUEST, the source route's return in a ROUTE REPLY, its use 
in forwarding data, and the sending of a ROUTE ERROR upon 
forwarding failure. The next hop is indicated by the address 

in parentheses. 

REPLY is returned within the nominal one-hop round trip time1, 
node S transmits a propagating ROUTE REQUEST that is flooded 
through the network in a controlled manner and is answered 
by a ROUTE REPLY packet from either the destination node 
or another node that knows a route to the destination. To 
reduce the cost of Route Discovery, each node maintains a 
cache of source routes it has learned or overheard, which it 
aggressively uses to limit the frequency and propagation of 
ROUTE REQUESTS. 

Route Maintenance is the mechanism by which a packet's 
sender S detects if the network topology has changed such 
that it can no longer use a known route to the destination D 
because two nodes listed in the route have moved out of range 
of each other. When Route Maintenance indicates a source 
route is broken, S is notified with a ROUTE ERROR packet. 
The sender S can then attempt to use any other route to D 
already in its cache or can invoke Route Discovery again to 
find a new route. Since the Lucent Technologies WaveLAN-I 
radios [25] used in our testbed do not provide any link-layer 
acknowledgment that a transmitted packet was successfully 
received, Route Maintenance in our implementation is driven 
by the DSR acknowledgment and retransmission mechanism 
described in Section 6.2. 

4   Testbed Overview 

Figure 2 shows a logical view of the ad hoc network testbed. 
The actual ad hoc network is comprised of 5 moving nodes, 
labeled T1-T5, and 2 stationary nodes, labeled El and E2, that 
communicate using 900 MHz WaveLAN radios. The ad hoc 
network is connected to afield office using a 2.4 GHz point- 
to-point wireless link over a distance of about 700 m. This 
point-to-point link does not interfere with the radio interfaces 
on the individual ad hoc network nodes. 

1 In our testbed, we used 30 ms as the timeout for non-propagating ROUTE 
REQUESTS. 
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Figure 2   Logical overview of the testbed network. 
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Figure 3   Map of the test bed site showing the endpoint 
locations and the typical course driven by the nodes. 

At the field office is a router R that connects both the ad hoc 
network and an IP subnet at the field office back to the central 
office via a wide-area network. The visualizer node V is used 
to monitor the status of the ad hoc network (Section 6.5.2), and 
the GPS reference station (RS) located on the roof of the field 
office is responsible for sending differential GPS corrections 
to nodes in the ad hoc network. 

The central office is home to a roving node (RN) that drives 
between the central office and the ad hoc network. Node HA 
provides Mobile IP home agent services [22] for the roving 
node so that it is able to leave the central office and still 
maintain connectivity with all of the other nodes in the testbed. 

During a typical experiment, which we call a run, the 
drivers of each of the moving nodes follow the course shown 
in Figure 3 at speeds varying from 25 to 40 Km/hr (15 to 
25 miles per hour). The road we used is open to general ve- 
hicle traffic and has several Stop signs, so the speed of each 



node varies over time, just as it would in any real, deployed 
network. 

We chose this configuration for our testbed as it is similar to 
a variety of possible military and commercial scenarios. For 
example, in a military scenario, the central office could repre- 
sent a Tactical Operations Center, the field office a battlefield 
command post, E2 could be a munitions dump, and the mov- 
ing vehicles T1-T5 a convoy of trucks carrying ammunition 
to a firing position at El. In a civil disaster relief scenario, 
the offices could again represent regional and local command 
centers, and the trucks T1-T5 could be ambulances or water 
tankers moving between the disaster site El and the stag- 
ing/treatment area E2. In all cases, the roving node RN can 
represent a supervisor sent to inspect the scene, a service truck 
sent to repair one of the nodes, or even an uninvolved node 
making use of the ad hoc network for improved connectivity 
as it wanders through the area. 

4.1 Design Decisions 

In choosing how many nodes to use in the testbed, we strove to 
include enough nodes to create interesting multi-hop behavior, 
while keeping the equipment and personnel requirements for 
operating the nodes small enough to be feasible. 

The geographical size of the testbed (700 m by 300 m), in 
turn, was set as a balance between the number of nodes avail- 
able (7, excluding the roving node RN) and the range of the 
radios used by the nodes (approximately 250 m). Increasing 
the range of the radios would allow us to run the testbed over 
more varied terrain, but would require nodes to move faster 
to maintain the same rate of topology change. Even with the 
radios that we chose, however, we found that we had to mount 
the nodes inside cars in order to move them in and out of range 
of each other in reasonable lengths of time. 

We derived several benefits from our solution to the con- 
straints outlined above. Working outdoors allowed us to use 
GPS (Global Positioning System) to accurately track the po- 
sition of the nodes, which was critically helpful in charac- 
terizing the network's performance. Another advantage of 
keeping the range of the radios small and working outdoors 
is the possibility of climbing to a high point from which the 
entire network can be seen at one time. The importance of vi- 
sualizing the entire network can not be overstated, especially 
during the early stages of development when the network was 
not working properly. 

4.2 Network Configuration 

All communication among the ad hoc network nodes, T1-T5, 
El, and E2, is routed by the Dynamic Source Routing (DSR) 
protocol [12,13,2]. Although the DSR protocol operates at 
the IP layer of the network stack (OSI layer 3) and permits in- 
teroperation between different physical interfaces, DSR con- 
ceptually operates as a virtual link layer just under the normal 
IP layer. 

Nodes T1-T5, El, and E2 are assigned IP addresses fromti 
single subnet, with E2 acting as a gateway between the Internet 
and the ad hoc subnet. E2 was manually configured to use the 

DSR protocol for communication on one network interface 
(the 900 MHz WaveLAN link), and to use normal IP routing 
over the other interface (the 2.4 GHz point-to-point link to its 
default router R). Packets from nodes in the Internet destined 
to addresses in the ad hoc subnet are routed by normal means to 
E2, which has a statically configured route directing them out 
the network interface to the ad hoc network. Once forwarded 
into the ad hoc network by E2, DSR takes care of routing the 
packets to their final destination, which often requires multiple 
hops inside the ad hoc network. As explained in Section 6.1, 
nodes in the ad hoc subnet (i.e., T1-T5 and El) did not have 
to be configured to use E2 as a default router: when nodes 
in a DSR ad hoc network send packets to nodes not in the 
ad hoc network, the DSR protocol itself automatically routes 
the packets to the nearest gateway (E2 in this case), where they 
are forwarded into the Internet. The gateway node, E2, also 
provides Mobile IP foreign agent services to any Mobile IP 
nodes that visit the ad hoc network. 

The roving node RN has available several methods for con- 
necting to the Internet, and uses Mobile IP [22] to choose the 
best method as it drives around the city. RN is normally within 
range of the WaveLAN network at the central office, and its 
WaveLAN network interface carries an IP address belonging 
to the central office subnet. When RN is roving away from the 
central office, it uses Mobile IP to register a care-of address 
with its home agent on the central office subnet. While RN 
has a care-of address registered with the home agent, the home 
agent intercepts packets destined to RN, and tunnels each to 
the care-of address using encapsulation. 

When RN cannot use its primary WaveLAN interface be- 
cause it is not in range of any other WaveLAN radios, it uses 
its CDPD modem to connect to Bell Atlantic Mobile's CDPD 
service, and registers its CDPD IP address with its home agent. 
Once RN realizes it is in range of a DSR network, it can use the 
DSR protocol to communicate directly with the other nodes 
in the ad hoc network. To enable packets from nodes outside 
the DSR network to reach RN, it registers itself with its home 
agent via the foreign agent at E2, just as in normal Mobile IP. 
When E2 receives a tunneled packet, it checks to see if the 
packet is destined to a node registered as visiting the ad hoc 
network. If so, E2 routes the packet to the visiting node using 
DSR. 

4.3   Node Equipment 

Nodes T1-T5 were each implemented by a rented car carrying 
an IBM Thinkpad 560X notebook. The Thinkpads were each 
mounted in a home-built rack carried in the front passenger's 
seat of the car, which also housed a GPS unit and 12VDC 
to 110VAC power converter used to power the equipment. 
Although tightening the 16 bolts that hold together each rack 
was blister producing, experience has shown the racks are a 
worthwhile investment as they prevent the equipment in the 
cars from becoming jumbled and eliminate the risk of cable 
connections coming undone. 

The 5 moving nodes (T1-T5) each carry a 900 MHz Lucent 
WaveLAN-I [25] radio connected to a 6 dB omni-directional 



antenna. These antennas are mounted on a rack on the roof 
of the cars, about 9 feet above the ground. The WaveLAN-I 
radio is a Direct Sequence Spread Spectrum device with a 
raw capacity of 2 Mb/s, and a 250 m nominal transmission 
range. The WaveLAN-I uses a Lucent-designed CSMA/CA 
MAC protocol that does not include link-layer retransmissions 
or acknowledgments. It also does not use mechanisms like 
those in IEEE 802.11 [11], such as RTS-CTS, to avoid hidden 
terminal issues.2 We chose the WaveLAN radio as they have 
a high enough bandwidth (2 Mb/s) to support both audio and 
data traffic. Additionally, we have a long history of working 
with these radios in both indoor and outdoor environments, 
they use unlicensed spectrum, and they are available with a 
jack for an external antenna. 

To enable the moving nodes to determine their location, 
they each carry a Trimble 7400 GPS receiver with the GPS 
antenna mounted on the roof rack alongside the WaveLAN an- 
tenna. Each GPS receiver is capable of calculating its position 
to within 100 m at all times, but when provided with correc- 
tion information from a GPS reference station can calculate 
its position to within 1 m or 1 cm, depending on the frequency 
and latency at which the correction information is provided. 
When receiving correction information at least once per 25 s, 
the GPS receiver operates in Differential mode (DGPS) and 
calculates positions with 1 m accuracy. When receiving cor- 
rection information consistently once per second, the GPS 
receiver operates in Real Time Kinematic mode (RTK) and 
calculates positions with approximately 1 cm accuracy. In 
our testbed, the GPS reference station was located at the field 
office, and the correction information it generated was sent to 
the nodes as a stream of broadcast packets over the multi-hop 
ad hoc network. 

The two end-systems shown in Figure 3, El and E2, were 
located at opposite ends of the course traveled by the mobile 
nodes and were implemented with laptops identical to those 
used in the moving nodes T1-T5. Because of their location, 
El and E2 could be conveniently used to test connectivity 
across the diameter of the ad hoc network. El carries a 
single 900 MHz WaveLAN radio with a 6 dB omni-directional 
antenna identical to that on the moving nodes. In contrast, E2 
serves as a router between the ad hoc network and the rest 
of the Internet. It communicates with nodes in the ad hoc 
network using a 900 MHz WaveLAN radio attached to a 6 dB 
yagi antenna and is linked to router R at the field office using a 
2.4 GHz WaveLAN radio connected to a 12 dB yagi antenna. 
We sited E2 at the opposite end of the course from the field 
office to demonstrate that the ad hoc network did not have to 
be close to any wired infrastructure. There is no 900 MHz 
WaveLAN radio in the field office, so all traffic into or out of 
the ad hoc network must travel through E2. 

IP Header 
(next protocol = Hop-By-Hop Options) 

Hop-By-Hop Options Header 
(next protocol = DSR Routing) 

DSR Routing Header 
(next protocol = TCP) 

TCP Header 
TCP data 

2 At the time we began designing the testbed, the Lucent IEEE 802.11 
product was not readily available, there were no FreeBSD device drivers 
supporting this hardware, and the cards worked only when used with a base- 
station. Thus, this product was not a viable choice for our testbed. 

Figure 4   Layout of headers in a typical 
packet in the DSR network. 

The roving node, RN, carried a 900 MHz WaveLAN radio 
and could use it to join the ad hoc network by communicating 
with nodes T1-T5, El, and E2. It also carried a Cellular 
Digital Packet Data (CDPD) modem that it could use for wide 
area digital packet service at 11 Kb/s provided by Bell Atlantic 
Mobile Systems. 

Each of the nodes at the central and field offices are Intel 
Pentium II PCs. All nodes ran the FreeBSD 2.2.7 UNIX 
system, modified with our DSR [2] and Mobile IP [22] kernel 
extensions. 

5   Protocol Implementation 
Our earliest implementation of DSR began as an extension to 
the Address Resolution Protocol (ARP). Running at the link- 
layer, each Ethernet frame had a DSR source route inserted 
between the Ethernet header and the IP header. This solution 
was simple, but could not span across multiple interface types. 

The desire to support heterogeneous networks pushed our 
implementation into the IP layer. The need to combine multi- 
ple types of DSR information together on the same packet and 
the desire to piggyback DSR information on data packets led 
us a packet format based the IPv6 extension header scheme. 

5.1    Packet Format 

The control messages of the DSR protocol are encoded 
using a series of extension headers that lie between the IPv4 
header and the normal IPv4 payload (e.g., the ICMP, UDP, or 
TCP header and data). This enables control messages to be 
piggybacked on ordinary data packets when they are available, 
or to be sent as separate control packets. Figure 4 shows the 
layout of the headers in a typical packet. As in IPv6, we use 
three types of extension headers: 

Hop-by-Hop Options: Processed by every node that re- 
ceives the packet and is used to carry DSR ROUTE REPLYS, 

ROUTE ERRORS, and ACKNOWLEDGEMENTS. The Hop- 
by-Hop Options extension header is also used to carry a 
GPS Option that gives the physical location of packet's 
originator at the time when the packet was transmitted. 

Destination Options: Processed only by a node whose ad- 
dress matches the IP Destination Address in the packet 
(which can be a unicast, multicast, or broadcast address). 
These headers are used to carry ROUTE REQUESTS. 
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Figure 5   The internal architecture of a node showing the 
DSR components and the Mobile IP components. 

Routing Header: Processed by a node whose address is 
equal to the IP Destination Address of the packet. Carries 
the source route describing the path that a packet must 
take through the network. 

With the one caveat explained next, we have found the ex- 
tension header scheme an elegant way to transport routing 
information for our on-demand routing protocol, and would 
recommend it to other designers. We used the extension 
header processing framework from the INRIA IPv6 distribu- 
tion [8]. Although the code was modular and easy to work 
with, we found that when passing around the chain of mbu f s 
that comprise a packet, we frequently had to read through the 
whole chain to find some header or other bit of information 
in the packet. Were we to implement from scratch again, we 
would pass along with the mbuf chain a structure containing 
all the critical information present in the packet (e.g., the next 
hop, whether an ACK is required, etc.), thereby enabling the 
code to process the packet without having to find and read the 
same extension header multiple times. 

5.2   Outgoing Packets 

Figure 5 shows the overall architecture of a node in the ad hoc 
network, including the DSR and Mobile IP kernel compo- 
nents, the user-level Mobile IP daemon, and the user-level 
logging utilities. 

All of the code implementing the DSR protocol resides 
inside the kernel in a module that straddles the IP layer. 
Conceptually, however, DSR can be thought of as a virtual in- 
terface (dsrO) residing below the IP layer. Like other groups 
that have used virtual interfaces to hide mobility from the 
normal network stack [5], dsrO accepts packets from the nor- 
mal IP stack just as any other interface would, but uses its 

own mechanisms to arrange for their delivery via the actual 
physical interfaces. 

Packets originated by a node's transport layer enter the 
IP layer as normal, where a routing table lookup is used to 
determine which interface they should be sent out. Nodes that 
use DSR exclusively (e.g., Tl-5 and El) have a default route 
directing all of their packets out the dsrO interface. When a 
packet is passed to the dsr_output () routine, DSR checks 
the Route Cache for a route. If a route is not found, the packet 
is inserted into the Send Buffer and a Route Discovery is 
invoked for the packet's destination. Otherwise, if a route to 
the destination is found in the route cache, the packet is passed 
down into the dsr_xmit () routine. The dsr_xmit () 
code is responsible for delivering the packet to its next hop, 
and so saves a copy of the packet into the Retransmission 
Buffer before handing it down to the output queue of the 
physical interface. 

Every 30 ms, a Route Discovery timer inspects the contents 
of the Send Buffer and, subject to the rate limiting described 
in the DSR Internet-Draft [2], initiates Route Discovery for 
any packets found in the Send Buffer. Likewise, a retrans- 
mission timer runs once per 50 ms, examining the contents 
of the Retransmission Buffer and retransmitting packets or 
generating ROUTE ERRORS as necessary. 

Because the radio interfaces we used are inherently broad- 
cast and the CPUs are significantly faster than the link band- 
width, we simplified our implementation by eliminating all 
need for ARP. All packets sent by dsr_xmit () are sent 
to the MAC broadcast destination address, so all nodes re- 
ceiving the packet will process it. This actually causes no 
extra processing overhead at the receiving nodes, since DSR 
operates the network interface in promiscuous receive mode 
to implement many of its optimizations [2]. 

As explained in Section 6.4, we needed to give the pack- 
ets with DSR routing information priority access to the link. 
After two initial attempts resulted in over-simplistic designs 
that accidentally reordered packets, we decided the cleanest 
solution was to implement a true multi-queue scheme for the 
interface output queues. Packets to each interface are demul- 
tiplexed into the outgoing queues based on the IP Type-of- 
Service (TOS) bits in each header. 

5.3   Incoming Packets 

The IP module reads packets from the IP input queue as nor- 
mal, and, following the IPv6 rules for extension headers, dis- 
patches the packet to the appropriate upper layer module based 
on the value of the IP Protocol field. Packets with a Protocol 
field indicating a DSR header is present in the packet are sent 
to the DSR options processing routines that handle each of 
the DSR extension headers. This involves adding the route 
from a ROUTE REPLY into the Route Cache; removing routes 
from the cache for ROUTE ERRORS; removing packets from 
the Retransmission Buffer for DSR ACKNOWLEDGMENTS; and 
forwarding packets based on the Routing Header. Packets that 
contain transport layer data for the processing node are handed 
up to the transport layer. 



5.4 Interfacing with User-Level Processes 

The DSR module communicates with user-level agents on the 
same node via an ahsock (ad hoc network control socket), de- 
rived from the BSD concept of a routing socket. The ahsock 
provided a general purpose conduit for information exchange 
between all user-level and kernel-level modules on a node 
concerned with the node's network operation. For example, 
whenever DSR originates a data packet, it places the node's 
location information into the DSR headers on the packet. This 
information is used for diagnostic purposes in the testbed, and 
is comprised by the node's latitude, longitude, heading, and 
speed. The in-kernel DSR module learns the location infor- 
mation from a user-level process called GPSd (Section 6.5.1) 
which reads the information from the GPS unit and writes it 
into the ahsock. Similarly, whenever the DSR module pro- 
cesses a packet from another node, it extracts the location 
information from the headers and sends the information to the 
ahsock. As a result, processes on the node listening to the 
ahsock can learn the last known location of the other nodes 
that are originating packets. The ahsock also proved itself 
an extremely valuable portal for invoking test code inside the 
DSR layer and viewing the results. 

5.5 Mobile IP 

The Mobile IP functionality is split between user space and 
kernel space, with a small encapsulator and decapsulator mod- 
ule inside the kernel being controlled by the user-level mobiled 
process, mobiled uses a collection of network interface con- 
trollers to monitor the status of each interface, and to gather 
information on any home agents or foreign agents reachable 
via the interface. Once it decides which interface is currently 
the best for communication, it uses the rtsock routing socket 
to manipulate the kernel and routing table state to use that 
interface. 

6   Implementation Features 
This section describes some of the notable features of our 
implementation, namely our scheme for integrating ad hoc 
networks with the Internet, the adaptive retransmission timer 
used by the DSR layer, and several logging and support util- 
ities that we found useful when working with the ad hoc 
network testbed. 

6.1   Integration with the Internet 

We have extended the mechanisms of Route Discovery and 
Route Maintenance to support communication between nodes 
inside the ad hoc network and those outside in the greater 
Internet. So that each node in the ad hoc network maintains 
a constant identity as it communicates with nodes inside and 
outside the network, we require that each node chooses a single 
IP address, called its home address, by which it is known to 
all other nodes. This notion of a home address is identical to 
that defined by Mobile IP [22]. As in Mobile IP, each node is 
configured with its home address and uses this address as the 
IP source address for all of the packets that it sends. 
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Figure 6   Route Request for a node not in the ad hoc 
network being answered by the Foreign Agent 

Figure 6 illustrates node T2 inside the ad hoc network dis- 
covering a route to a node D outside the network. As the 
ROUTE REQUEST from T2 targeting D propagates, it is even- 
tually received by the gateway node E2, which consults its 
routing table. If it believes D is reachable outside the ad hoc 
network, it sends a proxy reply listing itself as the second-to- 
last node in the route, and marking the packet such that T2 
will recognize it as a proxy reply. If the target node D actu- 
ally is inside the ad hoc network, then node T2 will receive a 
ROUTE REPLY from from both E2 and D. Since T2 can distin- 
guish which replies are proxy replies, it can prefer the direct 
route when sending packets to D. Our method of integrating 
ad hoc networks with the Internet and several related issues 
are described in more detail in a separate publication [3]. 

6.2   Acknowledgment and Retransmission Mechanism 

Since the WaveLAN-I radios do not provide link-layer re- 
liability, we implemented a hop-by-hop retransmission and 
acknowledgment scheme within the DSR layer that provides 
the feedback necessary to drive Route Maintenance. Each 
packet a node originates or forwards is retransmitted until an 
acknowledgment from the next hop is received, or until three 
transmission attempts have been made, at which point the next 
hop is declared unreachable and a ROUTE ERROR is sent to the 
originator of the packet. 

We utilize passive acknowledgments [15] whenever pos- 
sible, meaning that if a packet's sender hears the next hop 
forward the packet, it accepts this as evidence that the packet 
was successfully received by the next hop. 

If a node A fails to receive a passive acknowledgment for 
a particular packet that it has transmitted to some next hop B, 
then A retransmits the packet, but sets a bit in the packet's 
header to request an explicit acknowledgment. This procedure 
allows A to receive acknowledgments from B even in the case 
in which the wireless link from A to B is unidirectional, since 
explicit acknowledgements can take an indirect route from B 
to A. Node A also requests an explicit acknowledgment from 
B if B is the packet's final destination, since in this case, A will 
not have the opportunity to receive a passive acknowledgment 
from B. 
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Figure 7   The distribution of values for the DSR 
retransmission timer over several runs. 

For each next hop to which a node has recently attempted to 
forward packets, it keeps a separate estimate of the round trip 
time (RTT) between it and the next hop. This RTT is then used 
to initialize the retransmission timer for each packet sent to the 
next hop. Our simulation studies [4] of the acknowledgment 
scheme in IMEP [6] suggested that an adaptive retransmission 
timer would be needed to accommodate competition for the 
shared link by other nearby nodes. In keeping with this, we 
used the TCP RTT estimation algorithm [26] to adapt the RTT 
for each next hop. 

Figure 7 shows the number of times a packet was sent with 
a given value of the retransmission timer over the course of 
several runs. Of the 4710 measurements in this particular 
data set, two values (both 920 ms) are not show in this figure. 
Approximately 75% of the packets transmitted use the mini- 
mum retransmission timer value of 50 ms. However, for the 
other 25% of the packets, the retransmission timer adjusted 
itself to values between 60 ms and 920 ms. The wide range 
indicates that an adaptive retransmission scheme is probably 
required for good performance if acknowledgments are im- 
plemented at a layer above the link layer. IEEE 802.11, for 
example, does not require an adaptive retransmission timer 
since the acknowledgment is a scheduled, atomic part of the 
exchange of a single data packet, and so the time between 
transmission of a data packet and the receipt of the acknowl- 
edgment is not effected by the number of nodes attempting to 
acquire the media. 

When performing retransmissions at the DSR layer, we 
also found it necessary to perform duplicate detection so that 
when an acknowledgment is lost, a retransmitted packet is 
not needlessly forwarded through the network multiple times. 
The duplicate detection algorithm used in our implementation 
specified that a node should drop a packet if an identical 
copy of this packet was found in either its Send Buffer or 
its Retransmission Buffer.   We found that this simple form 

of duplicate prevention was sufficient, and that maintaining a 
history of recently seen packets was not necessary. 

In order to limit load on the CPU, we set the granularity 
at which the retransmission timer is serviced to 50 ms. This 
value was chosen based on observed retransmission timer 
values and the average one-hop RTT, which is 30 ms. 

6.3   Managing the Retransmission Timer 

As described in Section 6.2 we implemented a hop-by-hop 
acknowledgment and retransmission scheme within the DSR 
layer for the purpose of performing Route Maintenance. 
However, we found that large numbers of packets are lost 
or retransmitted needlessly if the retransmission timer does 
not adapt quickly enough during periods of network conges- 
tion. During times of network congestion, the time between 
when a packet is sent and the acknowledgement received in- 
creases due to the need for both packet and acknowledgement 
to compete for the media. 

We found that a simple method of reacting to increasing 
congestion did not work. If retransmission timer expirations 
are treated as a RTT sample of twice the current RTT, the value 
of the retransmission timer tends to diverge and remain pegged 
at its maximum value, even after congestion has subsided. 

We developed a successful retransmission timer algorithm 
by including a heuristic estimate of the level of local conges- 
tion, so that the retransmission timer could react quickly to 
changes. One of the simplest ways for a node to measure 
congestion in the network is to look at the length of its own 
network interface queue. Specifically, if more than 5 packets 
are found in the interface queue — meaning that congestion is 
starting to occur—we increase the value of the retransmission 
timer 20 ms for each packet in the queue. This heuristic allows 
the retransmission timer to increase quickly during periods of 
congestion and then return just as quickly to its computed 
value once the congestion dissipates. 

The result of a simple experiment demonstrating this idea 
is shown in Figure 8. This figure represents an experiment 
in which node A sent 300 ICMP Echo Request packets to 
node B at a rate of 10 packets per second. The interface queue 
at node A was alternately disabled (not serviced by the device 
driver) for three seconds and then enabled for 10 seconds in 
order to simulate congestion. In Figure 8(a) and (b), the left- 
most line in the sequence plot represents the time that an Echo 
Request with the specified sequence number was sent from A 
to B. The center line of X's (shifted 1 second for clarity) 
indicates what ICMP sequence numbers were retransmitted 
by the DSR layer at node A, and the right-most line (shifted 
2 seconds for clarity) indicates when node A received the 
corresponding Echo Reply packets from B for each ICMP 
sequence number. 

Figure 8(a) shows the ICMP sequence number plot for the 
case in which no additional heuristics were used to adapt the 
retransmission timer. Figure 8(b) shows the same plot for 
the case in which the queue length was taken into account as 
discussed above. Comparing the two figures, there is a total 
of 118 retransmissions in the case in which the queue length 
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Figure 8   Retransmission behavior with and without heuristics to adapt to congestion. The time base of 
retransmissions and replies in figures (a) and (b) have been shifted for clarity. 

was not considered, but only 16 retransmissions occur in the 
case in which the queue length was used to help adapt the 
retransmission timer. 

Figures 8(c) and (d) show the value of the retransmission 
timer for a given packet at the time at which it was sent 
by the DSR layer, in order to illustrate the reason for the 
difference in the number of retransmissions. When the queue 
length is not used as a heuristic to set the retransmission 
timer, the maximum value used for the retransmission timer is 
240 ms (Figure 8(c)). When the queue length is accounted for 
(Figure 8(d)), the retransmission timer backs off much more 
quickly when the queue begins to fill up, attaining a maximum 
value of 810 ms. However, as the queue empties, it quickly 
returns to its normal (measured) value. This behavior results 
in significantly fewer retransmissions by the DSR layer during 
periods of transient congestion. 

6.4   Prioritizing Packets 

It is critical that packets generated by the routing protocol 
propagate through the network in a timely fashion. For exam- 
ple, ROUTE REQUESTS that are significantly delayed prevent 
data from being transmitted. Similarly, delaying the trans- 
mission of a ROUTE ERROR allows bad state to remain in 
the network (thereby increasing packet loss), and delays in 
transmitting network-layer acknowledgments may lead to ex- 
cessive packet retransmissions that will congest the network. 

For this reason, all DSR packets (REQUESTS, REPLIES, 

ERRORS, and ACKNOWLEDGMENTS) are given higher prior- 
ity than normal data packets. Additionally, data packets that 
are being retransmitted by the DSR layer are also treated as 
high priority packets, since the failure to get such a packet 
through may result in an upper-layer protocol retransmitting 
the packet. We noted these competitive retransmissions in 
our early testing, but did not quantify their impact before 



changing the priority of retransmissions as described here to 
compensate. 

To enable priority-based scheduling of packets transmis- 
sions, we implemented a multi-level queue scheme in which 
packets are placed in different queues based on their priority. 
As described in Section 5.2, priorities are assigned to pack- 
ets using the Type-of-Service (TOS) field in the IP header. 
Currently, we need only two-levels of priority: low delay 
and normal priority. The highest priority queue is always 
completely serviced before any packets from the next-highest 
priority queue are transmitted. Although the potential for star- 
vation exists with this scheduling algorithm, we have found 
in practice that starvation does not occur. 

6.5   Logging and Support Utilities 

Each node in the testbed runs a series of user-level logging 
and monitoring utilities. In the context of the testbed, the 
output of these utilities serves as the basis for the post-run 
analysis of each experiment. In a deployed network, some 
of this information could also be valuable directly to the end 
user. 

6.5.1    Global Positioning System Information 

Each node in the network is outfitted with a GPS receiver 
and runs a program called GPSd, which reads the current 
position information from the GPS receiver over a serial cable 
and makes it available to the other processes on the node via 
a local socket (Section 5.4). Whenever a node originates a 
packet, the DSR code includes the node's current location in 
the header of the packet so that each of the packet's recipients 
will learn the location of the sender. By logging the GPS 
information, we can analyze the behavior of DSR during a 
run and can, for example, recreate any run of the testbed in 
simulation. 

As described in Section 4.3, the GPS receivers must be 
continually supplied with up-to-date corrections in order to 
obtain the highest degree of accuracy in the GPS position in- 
formation. This correction information is generated once per 
second by the GPS reference station located at the field office, 
and must be delivered to the GPS receivers with minimum 
delay in order to be useful. Typical GPS deployments use a 
long-range broadcast radio to distribute the corrections, but in 
our testbed, we used the ad hoc network itself to distribute the 
corrections. 

The correction information is generated at the reference sta- 
tion in a Trimble proprietary binary format, which is encapsu- 
lated into IP packets and transmitted across the point-to-point 
2.4 GHz wireless link to E2. From E2, the corrections are mul- 
ticast into the ad hoc network by piggybacking the data onto 
a ROUTE REQUEST targeted at a multicast address [2]. The 
correction packets propagate hop-by-hop across the ad hoc 
network, and the GPSd process on each node loads the cor- 
rection information into the GPS receiver. In our experiments, 
the routing protocol delivered the correction packets with low 
enough delay that all GPS receivers typically operated in the 

highest accuracy RTK mode, where position fixes have accu- 
racy within about 1 cm. 

6.5.2   Network Monitoring and Fault Diagnosis 

In order to gather real-time statistics on node performance 
and status (e.g., number of packets forwarded and number 
of ROUTE REQUESTS sent), each node runs a process called 
the Position and Communication Tracking daemon (PCTd). 
The purpose of the PCTd is to enable real-time monitoring 
and visualization of the network as it runs, and to enable a 
replayed visualization of a run after it concludes. To create a 
permanent record of the run, PCTd logs the data to a local file, 
and to facilitate real-time diagnosis, it unicasts the information 
that it collects over the ad hoc network to a visualizer V at the 
field office (Figure 2). 

The visualizer application is written in Tcl/Tk and displays 
a map of the site showing the current location of all vehicles, 
based on the GPS information reported from PCTd. Clicking 
on a node brings up event logs for that node, and allows the 
user to open strip-chart plots of information, such as error 
rates and packet forwarding rates, that were recorded at the 
node. 

Figure 9 shows a screen shot of the visualizer application 
during the replay of a testbed run. The main window shows 
the location of the nodes, based on the information reported 
by PCTd. The clock at the top right shows the elapsed time in 
seconds since the run began. Across the bottom are boxes for 
each node which show the quality of the position fix provide by 
GPS (all nodes show Real-Time Kinematic Float in the figure) 
and the time at which the last PCTd update was received from 
that node. The three windows down the side show strip-chart 
recordings of the number of packets per second handled by 
nodes during the run as a function of elapsed time. Reading 
from top to bottom, they show: 

1. The number of DSR packets per second forwarded by 
node 6 (labeled E2 in Figure 2). This indicates the total 
traffic into and out of the ad hoc network. 

2. The number of TCP packets per second received by the 
transport layer on node 7 (labeled El in Figure 2). 

3. The number of UDP packets per second sent by node 3 
(labeled T3 in Figure 2) while the synthetic voice traffic 
generator was running. 

The visualizer serves three major roles in our testbed. First, 
since the PCTd packets themselves traverse the ad hoc net- 
work, simply receiving PCTd updates indicates that the basic 
network is functioning. Should the network fail, PCTd does 
log all its information on local disk where it can be recovered 
after the run. Second, the visualizer has proven crucial for 
explaining to others what is happening in the network. Since 
the course is over 700 m long and makes several turns, there 
is almost no way to see all of it at once. Without a "bird's 
eye" view of the network, it was hard to make people grasp 
what they were seeing. Finally, the network is of sufficient 
complexity that even we as its designers and operators needed 
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Figure 9   Screen shot of VIZ, the network monitoring and fault diagnosis tool. The main window shows the location of the nodes 
based on the information reported by PCTd. The three windows down the side show the number of packets per second forwarded by 

node 6, received by TCP on node 7, and sent by UDP on node 3, respectively. 

a network management console in order to look for subtle 
interactions and diagnose problems on the fly. 

6.5.3    t cpdump and Signal Strength 

During a standard run, each node uses t cpdump to record 
to local disk all the packets it received during the run. Post- 
run analysis of these packet traces is the single best source 
of information we found for understanding the activity of the 
network. As a caveat, we did find that even though we used 
233 MHz Pentium laptops connected to a link with a maximum 
bandwidth of 2 Mb/s, when t cpdump attempted to capture 
the entire packet (snaplen = link MTU), the bursts of disk 
activity for large streams of received packets were enough to 
cause the machines to delay sending their acknowledgment 
packets past the expiration of the retransmission timer. The 
resulting retransmissions more than halved the goodput we 
measured for TCP and CBR transfers—indeed, during several 
experiments that we ran in the lab, TCP goodput dropped from 
0.9 Mb/s to 0.3 Mb/s when t cpdump was run with a snaplen 

of 2000 bytes. We found that saving only the first 200 bytes of 
data from each packet did not adversely affect TCP's goodput. 

For each packet received, the WaveLAN-I cards report the 
"signal strength" and "signal quality" with which they re- 
ceived the packet — information which is useful for character- 
izing the quality of the wireless link. Since this information is 
associated with each received packet, we originally found that 
the most convenient way to make this information available to 
our monitoring applications was to append the signal strength 
information to each incoming packet before the WaveLAN 
device driver tapped the packet off to the Berkeley Packet 
Filter (BPF). It was the need to record the metrics at the end 
of each packet that originally motivated us to have t cpdump 
record the entire packet. Instead, we were able to capture the 
signal strength information without overloading the machines 
by extending the BPF header (struct bpf _hdr) with a 
generic interface-metrics field so that the signal information 
could be tapped off with each received packet, regardless of 
the snaplen specified. 
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6.5.4 Hardening the Network Tools 

When working with standard utilities such as Netperf [14] 
and with our own PCTd, we found that they frequently ex- 
ited, crashed, or aborted. Specifically, many network utilities 
terminate upon receiving an error from system calls such as 
write or sendto. However, in the the dynamic, unpre- 
dictable environment of an ad hoc network where tempo- 
rary partitions are unavoidable, we found that these programs 
needed to be altered so that the receipt of an ICMP Destination 
Unreachable message did not result in a fatal error. We gen- 
erally handled these errors by putting the process to sleep 
for a few seconds, clearing the error on the socket, and then 
allowing it to retry its previous operation. 

6.5.5 Per-Packet State Tracing 

In order to understand the packet traces we recorded, it was 
useful to have access to the internal state variables of the 
protocols. For our TCP traffic generator, we used the program 
DBS [19], which both creates an offered load and utilizes 
a small kernel module that records the contents of the TCP 
protocol control block every time a packet is sent or received. 
DBS then saves the collected control blocks to a local file. 

Likewise, to verify parts of the DSR implementation, such 
as the retransmission timers, we implemented a logging device 
akin to syslog called /dev/kdsr to which DSR wrote its 
internal state variables every time it sent a packet. A user-level 
program read these binary records from the kernel and logged 
the variables to disk for later analysis, syslog was not 
appropriate for this task, because this logging had to be very 
efficient to avoid disrupting the system. We believe converting 
log records to printable strings on critical code paths within 
the kernel would have been too costly an operation. 

6.5.6 Traffic Generation Tools 

In order to obtain good experimental control over the load 
offered to the network, we developed an Application Traffic 
Generator (ATG) program capable of performing three types 
of data transfers with any other machine in the network also 
running the ATG. The ATG currently supports synthetic voice 
calls, bulk data transfer, and location dependent transfers. 
Voice calls are synthesized by a stream of 1000-byte UDP 
packets being sent from caller to callee for 10 seconds at a 
rate of 8 packets per second. The caller then pauses for 10 
seconds while the callee sends the caller a similar data stream 
for 10 seconds. This pattern then repeats for the duration of 
the call to simulate the back and forth nature of speach. Bulk 
data transfers consist of a TCP connection transferring a file 
from one machine to another (i.e., FTP). Location dependent 
transfers make use of the GPS information available on the 
nodes to begin a transfer whenever the sending node enters an 
area specified by GPS coordinates and end the transfer when 
leaving the area. 

The pattern, rate, and size of the connections are specified 
to the ATG running on each machine by a configuration file. 
Table I shows the load carried by the testbed network dur- 
ing full runs. It includes: each node making one voice call 

Figure 10   The map display of ad-hockey showing the 
positions and trajectory of the nodes. The trajectory can be 

changed by click-and-drag on the grey knots. 

to every other node once per hour; each node transferring a 
data file to every other node once per hour; and each moving 
node (Tl-5) making a location dependent transfer to El when 
within 150 m of El. The table also shows the load created by 
the "differential GPS corrections" (Section 6.5.1) and the situ- 
ational awareness (PCTd) information (Section 6.5.2) carried 
on the network. 

7   Preliminary Testing and Course Evaluation 
7.1   Initial Node Testing 

The initial testing of our implementation of DSR was ham- 
pered by the fact that we intended to use radios with a range 
of about 250 m, and testing the implementation meant repeat- 
edly and repeatably moving the nodes in and out of range 
of each other. Not having the services of the school track 
team available for this, physically moving the nodes in order 
to cause network topology changes while controllably debug- 
ging the implementation would be an intractable problem. To 
enable us to test our implementation quickly on a wide range 
of topologies and movement patterns, we developed a simple 
ad hoc network emulation system. 

We placed all of the physical laptops running the actual DSR 
code together in our lab, each connected to their actual radio. 
Since each machine was physically within direct range of all 
the others, we could emulate any desired topology by simply 
preventing the network stack of each machine from process- 
ing the packets that it would not have been able to receive had 
the nodes actually been deployed in the field and separated by 
varying distances. To achieve this, we implemented a packet 
killer called the macfilter between the physical interface and 
the network layer input queue. The macfilter checks the MAC 
source address of each received packet against a list of pro- 
hibited addresses. Packets whose source addresses are found 
on the list are silently dropped. Emulating the motion of the 
nodes then reduces to the problem of loading the macfilter with 
the proper list of prohibited addresses at appropriate times. 
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Table I   Load offered to the network by nodes in the testbed. 

Application Rate Protocol Size 

Voice 6/hour/node UDP Average of 180 kbytes 

Data 5/hour/node TCP 30,60, or 90 kbytes 

Location Dependent When near El TCP Average of 150 kbytes 

GPS 1 pkt/sec broadcast UDP 150 bytes 

PCTd 1 pkt/sec/node unicast UDP 228 bytes 

We control the macfilter packet-killer with a trace file con- 
sisting of the MAC source address lists and the times at which 
these lists should be loaded into the macfilter. The trace files 
are created by using our ad-hockey graphical scenario cre- 
ation tool to draw the paths the nodes should move along 
(Figure 10). The ad-hockey tool then generates the trace 
files-using a trivial propagation model where any nodes falling 
within a fixed radio range of each other can communicate, and 
any falling outside the range cannot. As the emulation runs, 
ad-hockey displays the "positions" of the nodes as they 
"move", allowing the testers to correlate node positions with 
protocol behaviors. 

Our emulation system of a packet-killer controlled by a 
trace file is similar in concept to the Network Trace Replay 
system [21], but neither it nor any of the other existing emu- 
lation systems available at the time had the expressive power 
to emulate a multi-hop ad hoc network. At a minimum, the 
packet-killer must be able to express the notion that a node 
A can receive packets from B while simultaneously and in- 
dependently being unable to receive packets from C. To be 
convenient, the emulation system must also provide tools for 
easily generating the packet-killer control files. For testing 
ad hoc networks, where the topology changes are driven by 
movement, we found having a tool that allowed us to draw the 
"motions" of the nodes extremely useful. 

We do not claim that performance measurements made on 
the emulated network created by macfilter in any way ap- 
proximate the measurements of a deployed network, and, in 
fact, we have verified that results obtained in the lab are not 
comparable to those collected in the field. Our packet-killer 
and trace generator do not emulate the variability of the out- 
door wireless environment, and all the nodes are in the same 
collision domain, so there are no hidden terminal problems. 

Nevertheless, the macfilter was a critically important tool 
during the early stages of developing and debugging the ad hoc 
networking code, as we could exercise all aspects of the pro- 
tocol from within our lab without having to spend count- 
less hours running around campus to create physical topology 
change. Using the emulation system, we created scenarios 
to individually test all the protocol's reactions to topology 
change, including Route Discovery, Route Maintenance, and 
the retransmission timers. The macfilter also allowed us to 
perform regression testing on the implementation, and to find 

bugs that only appeared after tens of hours of running, whereas 
we could not possibly ask our human drivers to keep driving 
that long. 

Since developing the macfilter as a protocol development 
tool, we have begun working to develop and validate systems 
that support true ad hoc network emulation [18, 9] which can 
be used for the accurate performance analysis of protocols and 
systems running on top of an ad hoc network. 

7.2   Characterizing the Course and Equipment 

As part of conducting an initial survey of the site, we found it 
particularly helpful to obtain a rough characterization of the 
site's propagation environment. We had two cars drive the 
course at about 30 Km/hr (20 miles per hour), one following 
the other, with the trailing car transmitting 1024-byte packets 
to the lead car 10 times per second. For each experiment, 
the cars made three laps of the course, a total driving time of 
about 660 seconds. We conducted experiments with the cars 
separated by 10, 25, and 50 seconds, which on the straight- 
aways is a distance separation of approximately 90 m, 220 m, 
and 440 m, respectively. 

During the experiments, each node recorded all packets 
heard by its radio using tcpdump. We then used a packet 
trace differencing tool that we developed to find the packets 
sent by the trailing car that were not received by the lead car. 
For all experiments, we found that the transmission losses 
occurred in regular bursts synchronized with the 220-second 
lap time. For example, Figure 11 depicts the losses as function 
of time for the 25-second separation experiment, with a line 
drawn at 1% of total losses. 

When plotted on a map of the site, the location of the worst 
propagation areas turned out to be surprising. Figure 12 shows 
a ' x' mark and a '+' mark for each time period in which the 
loss was greater than the 1% line in Figure 11. The ' x' mark 
depicts the point where the trailing car was located when it 
transmitted the packets that were lost in transmission, and the 
'+' mark depicts the point where the lead car was located when 
it failed to receive the packets. All of the loss bursts occurred 
while the nodes were on the straightest part of the course with 
clear line-of-sight to each other. There is no elevation change 
along that portion of the course, and the parking lots along the 
south side of the road were empty during the test. 
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Figure 11   Times at which packets were lost during a run. 
Horizontal line indicates 1% of total number of packets. 
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Figure 12   The location of the sending node and receiving 
node when more than 1% of packet loss occurred. Nodes 

maintained 25 s separation (220 m). 

To rule out the possibility that the drivers were merely 
speeding up on the straightaway and so increasing the distance 
between the nodes, we reran the experiment with a separation 
of 10 seconds (90 m) between the nodes. The results, depicted 
in Figure 13, show that even with a spacing between the cars 
of much less than half the radios' nominal range of 250 m, 
there are still significant loss bursts in front of the field office 
building. Our current hypothesis is that the radios are suffering 
from multipath reflection off of the flat fronts of the buildings, 
in particular the large building next to the field office. 

8   Ping Test Results 
As an initial end-to-end measurement of the ad hoc network's 
ability to route packets over multiple hops between the nodes, 
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Figure 13   The location of the sending node and receiving 
node when more than 1% of packet loss occurred. Nodes 

maintained 10 s separation (90 m). 

we conducted a test in which the 5 moving nodes T1-T5 drove 
the course shown in Figure 3 at a speed of 30 Km/hr (20 miles 
per hour) while maintaining a separation of approximately 
200 m. 

El then offered a traffic load to the network, consisting 
solely of 64-byte ICMP ECHO REQUEST packets directed at 
stationary node E2, sent every 300 ms for approximately 1000 
seconds. Since El and E2 are not within wireless transmission 
range of each other and since the cars continue to loop between 
these points, the sequence of hops taken by each packet was 
variable. Including the IP header (20 bytes), the WaveLAN 
header (16 bytes), and the GPS information piggybacked on 
each packet (44 bytes), the minimum size of these packets was 
144 bytes. As explained in the following sections, these ping 
tests served a variety of purposes. 

8.1   Quality of Communication 

During this test, El originated 3343 unique ICMP ECHO 
REQUEST packets. E2 returned 3013 ICMP ECHO REPLY 

packets for an overall end-to-end loss rate of 10%. This num- 
ber gives us a rough approximation of the type of loss rate that 
applications will experience when trying to operating within 
the ad hoc network. 

Since 10% is a high loss rate for end-systems to cope with, 
we examined the network dynamics of this test more carefully 
to determine what caused the losses. Due to the setup of the 
test, El alternated among using each of the moving nodes as 
the first hop on its route to E2. Table II shows the raw loss 
rate over a single hop from node El to each of the moving 
nodes, excluding packet retransmissions by the DSR layer. 
These numbers characterize the error rate of the wireless link 
and show what the per-link loss rate would be in the absence 
of retransmissions by DSR. 

In contrast, Table III shows the loss rate of the links be- 
tween El and each of the moving nodes when including DSR 
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Table II   The packet loss rate experience by node El to each 
first-hop node when counting the number of unique ECHO 

REQUESTS transmitted by El. The packets received column 
does not include retransmissions by the DSR layer. 

Packets Sent Packets Recv Loss Rate 
Tl 730 635 13.01% 
T2 525 459 12.57% 
T3 658 604 8.21% 
T4 472 414 12.29% 
T5 947 844 10.88% 
Total 3332 2956 1.1.28% 

Table III   The packet loss rate experience by node El to 
each first-hop node when counting the number of unique 

ECHO REQUESTS transmitted by El. The packets received 
column includes retransmissions by the DSR layer. 

Packets Sent Packets Recv Loss Rate 
Tl 730 681 6.71% 
T2 525 489 6.86% 
T3 658 631 4.10% 
T4 472 448 5.08% 
T5 947 907 4.22% 
Total 3332 3156 5.28% 

retransmissions. The significant reduction in loss rate over 
each link shows that the DSR retransmission scheme is serv- 
ing its purpose. 

8.2   Verifying the DSR Retransmission Algorithm 

In addition to verifying that DSR retransmissions were im- 
proving the per link loss rate perceived by applications, we 
also needed to verify that DSR was not retransmitting ex- 
cessively and thereby burdening the network. During this 
1000-second ping test, El transmitted 4401 ECHO REQUEST 

packets. As mentioned in Section 8.1, only 3343 of these 
packets had unique sequence numbers, indicating that 1058 
packets (24% of the total number of transmissions) were actu- 
ally retransmissions or duplicates generated by the DSR layer. 

Of the 1058 retransmitted or duplicate packets, 185 were 
found to be packets removed from the Retransmission Buffer 
and recycled by the DSR layer because the packet's first-hop 
destination was found to be unreachable. 

In order to explain the remaining retransmissions, we at- 
tempted to verify that for each first hop node (T1-T5), the 
number of retransmissions made by El satisfied the follow- 
ing criteria, which captures the notion that packets must be 
retransmitted until they are acknowledged: 

Rxmt s=s Orig - ACKpassive + Rxmtiost + ACKiost 

where Rxmt is the total number of retransmissions made 
by El, Orig is the number of unique packets originated by El, 
ACKpassive is the number of passive acknowledgments re- 
ceived by El, Rxmtiost is the number of retransmissions 
made by El that were not received by the first-hop node, and 

Table IV   The the number of ECHO REQUESTS transmitted 
by node El to each first-hop node and the number of passive 
acknowledgments that El received from each first-hop node. 
The expected number of retransmissions (the difference of 

column 1 and column 2) is shown in the third column. These 
numbers do not include retransmissions by the DSR layer. 

Packets Sent Passive Acks Expected Rxmts 
Tl 730 613 117 
T2 525 445 80 
T3 658 601 57 
T4 472 410 62 
T5 947 842 105 
Total 3332 2911 421 

ACKiost is the number of explicit acknowledgments trans- 
mitted by the first-hop node that were not received by El. For 
purposes of analysis, we rewrite the equation as: 

Rxmt - Rxmtiost - ACKi0St « Orig - ACKpassive 

Table IV evaluates the right half of this equation and shows 
how many ECHO REQUEST packets were originated by El 
when using each of the moving nodes as the first hop and 
how many passive acknowledgments were received as a result 
of the first-hop node forwarding the packet. The difference 
of those two values is the number of retransmissions that we 
would expect El to attempt to each first-hop node. The total 
number of expected retransmissions is 421. 

Table V evaluates the left half of the equation, showing the 
actual number of retransmissions made by El to each of the 
moving nodes and the number of these retransmissions that 
were lost. Subtracting these numbers yields the number of 
retransmissions received by the first hop node. Each retrans- 
mission must be explicitly acknowledged by the first hop node, 
and the loss of the explicit acknowledgement will cause El 
to retransmit the packet again. Subtracting the lost explicit 
acknowledgements yields the total number of successful re- 
transmissions made by the network. Summing over all first 
hops shows there were a total of 345 successful retransmis- 
sions. 

Using this rough estimation technique, we see that the 
number of expected retransmissions shown in Table IV is 
greater than the number of successful retransmissions shown 
in Table V. This verifies that DSR is not retransmitting spuri- 
ously. The numbers are not exactly equal due to packets that 
are discarded after being retransmitted the maximum allowed 
number of times. 

8.3   Variability in the Environment 

Occasionally during our testing, we found that El could com- 
municate directly to E2, a distance of 671 m. Since the 
900 MHz WaveLAN radios used in this testbed are specified 
by Lucent to have a range of about 250 m, this indicates just 
how variable electro-magnetic propagation can be. During 
these ping tests, El attempted to send 367 ECHO REQUESTS 

directly to E2.   192 of these packets were originations (not 
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Table V   The difference in the number of retransmissions 
made by El to each first-hop node and the number of those 

retransmissions that were lost is the number of 
retransmissions that got through. Subtracting the number of 

the explicit ACKs lost yields the number of successful 
retransmissions. 

Table VI   The distribution of route lengths used during the 
ICMP tests. The ECHO REQUEST packets traversed routes 

from El to E2 and the ECHO REPLY packets traversed routes 
from E2 to El. 

Rxmts Rxmts Lost Acks Lost Successful 
Tl 254 94 17 143 
T2 102 63 6 33 
T3 75 35 2 38 
T4 82 34 2 46 
T5 189 81 23 85 
Total 702 307 50 345 
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Figure 14   Inter-packet spacing of received ICMP Echo 
Reply packets when Echo Requests were sent every 300 ms. 

retransmissions), and of these 192 originations 149 unique 
replies were returned from E2, giving a loss rate of 22.4%. 

8.4 Inter-packet Spacing of ECHO REPLY Packets 

During the ICMP test, ECHO REQUEST packets were sent once 
per 300 ms, so we would expect the inter-packet spacing 
of ECHO REPLYS to be close to 300 ms as well. As noted 
above, 3013 ECHO REPLY packets were returned from E2 to 
El. Figure 14 shows the inter-packet spacing for the 99th 
percentile of these packets; 30 measurements were discarded 
as outliers. The mean inter-packet spacing is 314 ms with a 
standard deviation of 0.026 ms. 

8.5 Route Length 

During the ping test, end-system El received 3010 ECHO 
REPLY packets that we were able to match to specific ECHO 

REQUESTS. Table VI shows the distribution of route lengths 
used for both REQUESTS (from El to E2) and REPLYS (from 
E2 to El). Slightly over 90% of the routes used between 
El and E2 were two- and three-hop routes. Occasionally, a 
direct route is discovered between the two end-systems, but 
this route receives little use because of its poor quality. 

Route Length 
1 2 3 4 

ICMP Echo Request 57 2405 547 1 
ICMP Echo Reply 188 2395 422 5 

9   TCP Test Results 
In addition to the ping tests reported in Section 8, we ran sev- 
eral experiments to characterize how well TCP [23] performs 
in our ad hoc network testbed. We first ran each experiment in 
the lab, using the macfilter tool (Section 7.1) to create a multi- 
hop environment. We then repeated the experiment outside in 
the actual ad hoc network. The lab measurements serve as a 
useful benchmark by giving us a best-case approximation to 
which we can compare the data collected the the field. 

9.1    Single-Hop TCP Experiments 

Our first set of experiments were intended to establish a base- 
line TCP performance and verify that the implementation of 
DSR itself did not degrade TCP's performance. Inside our 
lab, we set up two DSR nodes and ran TCP benchmarks using 
DBS across the one-hop link between them. In the single-hop 
case, passive acknowledgments cannot be used and so a DSR 
ACKNOWLEDGMENT is transmitted in response to each data 
packet. 
, Our first experiment consisted of performing 5 data trans- 
fers of 1 MB each in the lab environment. Over these 5 trans- 
fers, TCP averaged 0.86 Mb/s (104 KB/s) with a standard 
deviation of 0.018 Mb/s. This number is less than half of the 
theoretical link capacity of 2 Mb/s, but coincides closely with 
the 0.9 Mb/s value typically observed when DSR is not used 
at all. Due to a choice of MAC protocol parameters inside 
the WaveLAN PCMCIA cards, node-to-node communication 
does not proceed as quickly as basestation-to-node commu- 
nication (which typically sees a throughput of approximately 
1.27 MB/s (155 KB/s)). 

We then moved both nodes into vehicles in the testbed and 
separated the nodes by a distance of approximately 250 m. 
Before starting the TCP test, we verified that the quality of the 
wireless link between the two nodes was sufficient to allow 
the nodes to successfully flood ping each other with 1024-byte 
packets. The nodes then remained stationary for the remainder 
of the test. 

The outdoor test consisted of 5 transfers of 1 MB each 
and 5 transfers of 5 MB each. The 1 MB transfers had an 
average throughput of 0.81 Mb/s with a standard deviation of 
0.022 Mb/s, while the 5 MB transfers averaged 0.73 Mb/s with 
a standard deviation of 0.157 Mb/s. The significant decline 
in average throughput for the 5 MB transfers results from a 
single outlier with a throughput of 0.4582 Mb/s. The average 
throughput of the other four transfers was 0.80 Mb/s. 

16 



The reasonable and consistent values of our one-hop TCP 
results assured us that our implementations of DSR's Route 
Discovery and Route Maintenance mechanisms were perform- 
ing correctly and not inhibiting TCP's performance. 

9.2   Two-Hop TCP Experiments 

As with the one-hop TCP experiments, we began the two-hop 
experiment by collecting data in the lab. Over 5 transfers 
of 1 MB each, TCP averaged 0.50 Mb/s (61 KB/s) with a 
standard deviation of 0.079 Mb/s. The variability is explained 
by the fact that one transfer achieved only 0.36 Mb/s, while 
all of the others achieved between 0.50 and 0.55 Mb/s. 

In order to correctly position the nodes for the outdoor 
experiment, two cars were driven in opposite directions and 
positioned as far from an intermediate node as possible, while 
still allowing both of the end nodes to successfully flood ping 
the intermediate node with 1024-byte packets. Once posi- 
tioned, the nodes remained stationary for the remainder of the 
test. 

This created a particularly challenging scenario, not only 
because electromagnetic propagation is highly variable, but 
because the specific setup of this test introduces the hidden ter- 
minal problem. A number of times during these tests, we saw 
the DSR retransmission timer expire, creating ROUTE ERRORS 

and subsequent Route Discovery attempts to restore connec- 
tivity. As described in Section 3, Route Discovery consists 
of a node sending a non-propagating ROUTE REQUEST fol- 
lowed by a propagating ROUTE REQUEST if no ROUTE REPLY 

is received within 30 ms. 
The 1 MB data transfers, which were set up to last for a 

maximum of 50 seconds, timed out in some of the cases before 
the entire megabyte could be transfered. In these cases, we 
report the average data rate for the 50-second duration of the 
connections. 

The average data rate for the two-hop outdoor scenario 
was 0.12 Mb/s (14.65 KB/s) with a standard deviation of 
0.025 Mb/s, only 25% of the throughput measured in the lab. 

The time-sequence number plot from one such two-hop 
connection in the testbed is depicted in Figure 15. Sequence 
numbers marked with a small dot were transmitted using a 
two-hop route through the intermediate node, while sequence 
numbers marked with the ' x' were transmitted directly be- 
tween the endpoints. The dashed vertical lines in the figure 
indicate when the TCP source performed a Route Discovery 
consisting only of a non-propagating ROUTE REQUEST, and 
the solid vertical lines indicate when a Route Discovery con- 
sisting of both a non-propagating and a propagating ROUTE 

REQUEST occurred. 
For the purpose of discussion, let node A be the TCP source, 

B the intermediate node, and C the TCP sink. Figure 15 
shows the TCP connection making very good progress and 
using almost exclusively a two-hop route for the first 9 sec- 
onds of the connection. However, during the time interval 
from 9 s to 22 s, the connection makes almost no progress, 
sending about 30 KB in this 13 s interval. After processing 
a ROUTE ERROR at t = 9 s, the TCP source (node A) initiates 

Figure 15   A TCP sequence number plot for a 1 MB transfer 
over a two-hop route. The vertical lines indicate the times at 
which the TCP source initiated Route Discovery; the dashed 

lines indicate the times at which only a non-propagating 
ROUTE REQUEST was transmitted and the solid lines indicate 
both a non-propagating and a propagating ROUTE REQUEST . 
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Figure 16    A TCP sequence number plot for a 1 MB transfer 
over a two-hop route when the macfilter utility was used on 
both the source and destination nodes to prevent the use of 
single-hop routes. The vertical lines indicate the times at 

which the TCP source initiated Route Discovery. 

a ROUTE DISCOVERY. The non-propagating ROUTE REQUEST 

is answered directly by node C, causing A not to send a sub- 
sequent propagating ROUTE REQUEST, but to use a single-hop 
route to node C. The poor quality of this single-hop link leads 
to repeated errors and Route Discovery attempts. Finally, at 
t = 18 s, node A's non-propagating ROUTE REQUEST fails to 
return any REPLYS and so A transmits a propagating REQUEST. 
This results in the discovery of both the single-hop route and 
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the two-hop route through the intermediate node. By this 
time, TCP has backed off and the next packet is not offered to 
the network until t = 22 s. Node A attempts to use the one- 
hop route that it discovered, finds that it does not work well, 
removes the one-hop route from it cache, and begins using 
the two-hop route. At this time, the connection again starts 
making progress. The same scenario of repeated attempts to 
use a one-hop route occurs again from t = 25 s to 32 s and 
from t = 35 s to 43 s. 

This scenario illustrates an important challenge for ad hoc 
network routing protocols and argues strongly that all routing 
protocols need some ability to remember which recently used 
routes have been tried and found not to work. Even traditional 
distance vector style protocols are subject to this problem as 
they attempt to minimize a single metric—usually hop count. 

Considering the three-node scenario discussed above, if 
A, B, and C were all participating in a distance vector rout- 
ing protocol, A would sometimes hear advertisements from 
node C. Since the direct route to C is more optimal in terms 
of hop count than the route through the intermediate node B, 
A would attempt to send all of its packets directly to C until 
that direct route timed out. In other words, without some type 
of local feedback or other hysteresis, A will oftentimes try to 
send its packets directly to C, effectively black-holing most of 
these packets since that link is so unreliable. Protocols such as 
Signal Stability Based Routing (SSA) [7] may behave much 
better in this scenario. 

To evaluate the potential gain of having a mechanism that 
would prevent the repeated use of the poor direct route from 
A to C, we emulated perfect routing information by using 
the macf ilter to eliminate the discovery of 1-hop routes. 
Figure 16 shows the time-sequence plot for a 1 MB transfer 
in the field using this "perfect routing." The flat plateaus are 
missing, and the throughput is 30% higher. We are presently 
considering three ways to implement such a mechanism in 
DSR. 

One solution would be for DSR to cache information about 
each link for which it receives a ROUTE ERROR. This negative 
information could be timed out after a certain period of time, 
but would prevent DSR from repeatedly attempting to use 
a poor quality link. The drawback of this solution is the 
difficulty of picking a reasonable timeout value. 

A second and more favorable approach would be to use 
the GPS information propagated by each node to model the 
position of nodes. If the link A to C is found to be bad, 
DSR could retain that negative information in its cache until 
it finds that either node A or C has changed position in some 
reasonably significant way. 

The third and more sophisticated approach would combine 
the signal strength at which the node received ROUTE REPLYS, 

the position of the nodes, and the mobility pattern of the nodes 
to estimate the probability that successful communication can 
occur over a particular route. We intend to experiment with all 
three approaches over the coming months to determine which 
approach is most suitable. 

10   General Lessons Learned 
We are continuing to experiment with the testbed — refining 
the protocols, the procedures, and the data analysis tools based 
on our ongoing experience. We believe that building testbeds 
like ours is a critical step towards a widespread deployment 
of ad hoc networks. It has already taught us much about the 
challenges faced by such networks, though this paper focuses 
on the specific lessons we learned while building the testbed. 
In summary, we briefly review some of the key issues we 
discovered. 

Obtaining route diversity is interesting, but expensive. As 
described in Section 4, the core ad hoc network in our testbed 
is comprised of 7 nodes: 2 stationary end-systems and 5 
moving nodes that move back and forth along a road between 
the 2 end-systems. This scenario works well given the limited 
number of vehicles, but creates an environment in which there 
is essentially no route diversity. In other words, at any point in 
time, there exists only a single route between any two nodes. 
This linear arrangement of the nodes also increases the hidden 
terminal problem. 

A less linear configuration would allow route diversity, but 
would increase the partitioning of the network unless more 
nodes were added. Similarly, the drawback of choosing radios 
with a short range is that the network is easily partitioned 
by only tens of meters variations in the relative positions of 
the vehicles. However, since a goal of the testbed was to 
challenge the protocols in a rigorous environment, the lack of 
route diversity has contributed to understanding the protocols' 
behaviors at one edge of the design space. As more nodes 
become available, we can then evaluate the scaling and routing 
issues at other points of the design space. 

Adaptive retransmission timers are a necessary complexity. 
Our experience makes clear that local retransmission algo- 
rithms will be a critical part of any multi-hop ad hoc network. 
Further, if the retransmission algorithm is implemented above 
the link-layer, it must be adaptive in order to accommodate 
network congestion and periods of high contention for the 
wireless channel. We did find that passive acknowledgments 
were successful in our environment, even though we did not 
also implement the transmission pacing advocated by the de- 
signers of the DARPA Packet Radio Network [15]. 

Multi-level priority queues are worth implementing. 
Delivering routing protocol control packets as rapidly as possi- 
ble is important for good end-to-end performance, and this im- 
plies that packets with routing implications should be sched- 
uled for transmission ahead of user's data packets. Our initial 
implementation of a priority scheme simply prepended all 
high-priority packets onto the network interface transmission 
queue. However, this prepending caused reordering of both 
the stream of control packets and the stream of user data pack- 
ets, since retransmitted data packets are also considered high 
priority. We found the most elegant solution was to imple- 
ment a multi-level queueing scheme, with one queue for each 
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priority at each interface. While we use a trivial schedul- 
ing algorithm, more sophisticated ones could potentially be 
valuable. 

Personnel management is nontrivial. A significant limitation 
on the number of nodes in our testbed was the availability of 
drivers to operate them. Although groups of three or four 
people could conduct useful experiments, a full run with all 
8 nodes required 7 or more participants for a period of 3 to 4 
hours. Since most of the drivers we recruited did not have an 
overall understanding of the system and project (and several 
were not even associated with the project), each of the runs 
started with a "mission briefing" to explain the goal of the ex- 
periment and the tasks each node had to perform. Although not 
described in this paper, we also developed many UNIX shell 
scripts and procedures to automate as many functions of the 
runs as possible, in particular the data logging, since several 
early runs had to be repeated because drivers did not properly 
configure and start the processes on their nodes. For safety 
reasons, each experiment had to be controlled autonomously 
or remotely once the cars started to move, since drivers could 
not read the screen or type while driving. 

In-lab testing of protocols is critical for success. The time 
we spent developing the macfilter system for emulating ad hoc 
networks was paid back many times over. It enabled exper- 
imentation with multi-hop topologies in the lab, which then 
served as a useful baseline for comparing with field measure- 
ments. Its greatest contribution, in fact, was in debugging and 
regression testing the implementations to harden them before 
exposing them to the very unpredictable real world. The mac- 
filter code itself took only a full day to write and test, and it 
proved easy to integrate with the existing ad-hockey tool 
for scenario generation. 

Monitoring and data analysis are improved with GPS informa- 
tion. Accurately knowing the position of each node during a 
run enabled many useful operations including real-time diag- 
nosis of network behavior and bird's-eye visualization of the 
entire site using our network visualizer. GPS information also 
enabled post-run analysis of the performance data that sepa- 
rated the effects of wireless propagation (packet losses due to 
transmission errors) from routing protocol induced behavior 
(packet losses due to routing errors). 

Wireless propagation is not what you would expect. We found 
that some of the areas of the site that we expected to have the 
best propagation, the straight flat areas with direct line-of- 
site connectivity, in fact had the worst wireless error rates. 
Conducting an initial survey of the site to identify these areas 
was useful, even though we did not alter the node movement to 
avoid the areas, because this knowledge of the site prevented 
us from unduly wasting time looking for errors in the routing 
protocol to explain the poor performance in these areas. 

We also found that the real world propagation environment 
will deliver packets between two widely separated nodes with 
much greater frequency that we expected. Our performance 

analysis demonstrates that this is a significant challenge that 
all ad hoc network routing protocols will need to address. 

Bystanders will think you are crazy. As an only partially 
humorous suggestion to anyone building a testbed in an urban 
area, it will be well worth your time to make friends early with 
the local police and security guards. They will visit you on a 
regular basis to find out what your slow moving cars covered 
in antennas are doing. We were aided considerably by the 
fact that our site was located in a research park, but it is still 
worth preparing a list of stock answers. For example, "No, 
we're not using the radios to conduct industrial espionage," 
"Our computers have a different purpose from the one in your 
police car," and, "No, I haven't seen that episode of the X- 
Files." 

11 Conclusions 

We have created a testbed for ad hoc network research, featur- 
ing 2 stationary nodes, 5 car-mounted nodes that drive around 
the testbed site, and 1 car-mounted roving node that enters 
and leaves the site. Packets are routed between the nodes 
using the DSR protocol, which also seamlessly integrates the 
ad hoc network into the Internet via a gateway. We have char- 
acterized the environment of the testbed site, evaluated some 
basic performance properties of the network and its links, and 
discovered practical challenges that routing protocols in this 
environment will need to overcome. 

This paper serves to document our experiences designing 
and building the testbed, in the hopes that the challenges we 
faced and our solutions will ease the path of future groups 
attempting to building such testbeds. We are presently car- 
rying out more experiments to characterize and improve the 
performance of our ad hoc network protocol. We are experi- 
menting with the network's behavior under different levels of 
traffic load, including audio and video streams, and designing 
protocol enhancements to provide these streams with quality 
of service promises. We also intend to use the testbed for eval- 
uating adaptive end-system techniques, including techniques 
for TCP adaptation, and for application layer adaptation via 
the Odyssey system [20]. 
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